Back to Search Start Over

Dexmedetomidine ameliorates muscle wasting and attenuates the alteration of hypothalamic neuropeptides and inflammation in endotoxemic rats.

Authors :
Cheng, Minhua
Gao, Tao
Xi, Fengchan
Cao, Chun
Chen, Yan
Zhao, Chenyan
Li, Qiurong
Yu, Wenkui
Source :
PLoS ONE; 3/30/2017, Vol. 12 Issue 3, p1-14, 14p
Publication Year :
2017

Abstract

Dexmedetomidine is generally used for sedaton in critically ill, it could shorten duration of mechanical ventilation, ICU stay and lower basic metabolism. However, the exact mechanism of these positive effects remains unkown. Here we investigated the hypothesis that dexmedetomidine could ameliorate muscle wasting in endotoxemic rats and whether it was related to hypothalamic neuropeptides alteration and inflammation. Fourty-eight adult male Sprague–Dawley rats were intraperitoneally injected with lipopolysaccharide (LPS) (5 mg/kg) or saline, followed by 50 μg/kg dexmedetomidine or saline administration via the femoral vein catheter (infusion at 5 μg·kg<superscript>-1</superscript>·hr<superscript>-1</superscript>). Twenty-four hours after injection, hypothalamus tissues and skeletal muscle were obtained. Muscle wasting was measured by the mRNA expression of two E3 ubiquitin ligases, muscle atrophy F-box (MAFbx) and muscle ring finger 1 (MuRF-1) as well as 3-methylhistidine (3-MH) and tyrosine release. Hypothalamic inflammatory markers and neuropeptides expression were also detected in all four groups. Results showed that LPS administration led to significant increase in hypothalamic inflammation together with muscle wasting. Increased hypothalamic neuropeptides, proopiomelanocortin (POMC), cocaine and amphetamine-related transcript (CART) and neuropeptides Y (NPY) and decreased agouti-related protein (AgRP) were also observed. Meanwhile dexmedetomidine administration ameliorated muscle wasting, hypothalamic inflammation and modulated the alteration of neuropeptides, POMC, CART and AgRP, in endotoxemic rats. In conclusion, dexmedetomidine could alleviate muscle wasting in endotoxemic rats, and it could also attenuate the alteration of hypothalamic neuropeptides and reduce hypothalamic inflammation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
12
Issue :
3
Database :
Complementary Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
122173326
Full Text :
https://doi.org/10.1371/journal.pone.0174894