Back to Search Start Over

The excitation mechanism of btp2Ir(acac) in CBP host.

Authors :
Xiao ‐ Bo, Zhang
Fu ‐ Xiang, Wei
Source :
Luminescence: Journal of Biological & Chemical Luminescence; May2017, Vol. 32 Issue 3, p409-413, 5p
Publication Year :
2017

Abstract

Whether bis(2-(2′-benzo[4,5-α]thienyl)pyridinato-N,C3′)iridium(acetylacetonate) (btp<subscript>2</subscript>Ir(acac)) emission comes from carrier trapping and/or energy transfer, when doped in the 4,4′-bis(N-carbazolyl)biphenyl (CBP) host in organic light-emitting devices, is not clear; therefore, the btp<subscript>2</subscript>Ir(acac) emission in CBP hosts was studied. In the red-doped device, both N,N′-bis(1-naphthyl)-N,N′-diphenyl-1.1′-bipheny1-4-4′-diamine (NPB) and (1,1′-biphenyl-4′-oxy)bis(8-hydroxy-2-methylquinolinato)-aluminum (BAlq) emission appeared, which illustrated that CBP excitons cannot be formed at two emissive layer (EML) interfaces in the device. In the co-doped devices, NPB and BAlq emissions disappear and 1,4-bis[2-(3-N-ethylcarbazoryl)vinyl]benzene (BCzVB) emission appears, illustrating the formation of CBP excitons at two EML interfaces in these devices. The reason for this difference was analyzed and it was found that holes in the NPB layer could be made directly into the CBP host in the EML interface of the red-doped device. In contrast, holes were injected into CBP host via the btp<subscript>2</subscript>Ir(acac)/BCzVB dopants in the co-doped devices, which facilitated hole injection from the NPB layer to the EML, leading to the formation of CBP excitons at two EML interfaces in the co-doped devices. Therefore, btp<subscript>2</subscript>Ir(acac) emission was caused by carrier trapping in the red-doped device, while, in the co-doped devices, it resulted from both carrier trapping and energy transfer from the CBP. Furthermore, it was revealed that the carrier trapping mechanism is less efficient than the energy transfer mechanism for btp<subscript>2</subscript>Ir(acac) excitation in co-doped devices. In summary, our results clarified the excitation mechanism of btp<subscript>2</subscript>Ir(acac) in the CBP host. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15227235
Volume :
32
Issue :
3
Database :
Complementary Index
Journal :
Luminescence: Journal of Biological & Chemical Luminescence
Publication Type :
Academic Journal
Accession number :
122406235
Full Text :
https://doi.org/10.1002/bio.3196