Back to Search Start Over

Dysregulation of INF2-mediated mitochondrial fission in SPOP-mutated prostate cancer.

Authors :
Jin, Xiaofeng
Wang, Jie
Gao, Kun
Zhang, Pingzhao
Yao, Longfang
Tang, Yan
Tang, Lisha
Ma, Jian
Xiao, Jiantao
Zhang, Enceng
Zhu, Jie
Zhang, Bin
Zhao, Shi-min
Li, Yao
Ren, Shancheng
Huang, Haojie
Yu, Long
Wang, Chenji
Source :
PLoS Genetics; 4/27/2017, Vol. 13 Issue 4, p1-24, 24p
Publication Year :
2017

Abstract

Next-generation sequencing of the exome and genome of prostate cancers has identified numerous genetic alternations. SPOP (Speckle-type POZ Protein) was one of the most frequently mutated genes in primary prostate cancer, suggesting SPOP is a potential driver of prostate cancer development and progression. However, how SPOP mutations contribute to prostate cancer pathogenesis remains poorly understood. SPOP acts as an adaptor protein of the CUL3-RBX1 E3 ubiquitin ligase complex that generally recruits substrates for ubiquitination and subsequent degradation. ER-localized isoform of the formin protein inverted formin 2 (INF2) mediates actin polymerization at ER-mitochondria intersections and facilitates DRP1 recruitment to mitochondria, which is a critical step in mitochondrial fission. Here, we revealed that SPOP recognizes a Ser/Thr (S/T)-rich motif in the C-terminal region of INF2 and triggers atypical polyubiquitination of INF2. These ubiquitination modifications do not lead to INF2 instability, but rather reduces INF2 localization in ER and mitochondrially associated DRP1 puncta formation, therefore abrogates its ability to facilitate mitochondrial fission. INF2 mutant escaping from SPOP-mediated ubiquitination is more potent in prompting mitochondrial fission. Moreover, prostate cancer-associated SPOP mutants increase INF2 localization in ER and promote mitochondrial fission, probably through a dominant-negative effect to inhibit endogenous SPOP. Moreover, INF2 is important for SPOP inactivation-induced prostate cancer cell migration and invasion. These findings reveal novel molecular events underlying the regulation of INF2 function and localization, and provided insights in understanding the relationship between SPOP mutations and dysregulation of mitochondrial dynamics in prostate cancer. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15537390
Volume :
13
Issue :
4
Database :
Complementary Index
Journal :
PLoS Genetics
Publication Type :
Academic Journal
Accession number :
122724317
Full Text :
https://doi.org/10.1371/journal.pgen.1006748