Back to Search Start Over

Study on microstructural evolution and constitutive modeling for hot deformation behavior of a low-carbon RAFM steel.

Authors :
Chen, Jianguo
Liu, Yongchang
Liu, Chenxi
Zhou, Xiaosheng
Li, Huijun
Source :
Journal of Materials Research; 4/14/2017, Vol. 32 Issue 7, p1376-1385, 10p
Publication Year :
2017

Abstract

The constitutive equation was established based on the consideration of strain compensation to describe the hot deformation behavior of low carbon reduced activation ferritic/martensitic (RAFM) steels at the temperatures of 850ā€“1050 °C and the strain rates of 0.01ā€“10 sāˆ’1. The result indicates that the flow stress is increased with the increase of strain rate but decreased with increase of deformation temperature. During the hot deformation process, the increase of temperature is beneficial to attain the complete dynamic recrystallization (DRX). However, excessively high temperature leads to grow up of dynamic recrystallized grain. Higher strain rate leads to finer recrystallized grains. The material constants (Ī±, n, A) and deformation activation energy (Q) are calculated by the regression analysis. The increase of strain caused the decrease of Q, indicating the DRX occurred more easily. In addition, the developed constitutive equation could accurately predict the hot deformation behavior of the low carbon RAFM steel. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
08842914
Volume :
32
Issue :
7
Database :
Complementary Index
Journal :
Journal of Materials Research
Publication Type :
Academic Journal
Accession number :
122856582
Full Text :
https://doi.org/10.1557/jmr.2017.77