Back to Search Start Over

Evaluating the accuracy of genomic prediction of growth and wood traits in two Eucalyptus species and their F1 hybrids.

Authors :
Biyue Tan
Grattapaglia, Dario
Martins, Gustavo Salgado
Ferreira, Karina Zamprogno
Sundberg, Björn
Ingvarsson, Pär K.
Source :
BMC Plant Biology; 6/29/2017, Vol. 17, p1-15, 15p, 2 Charts, 6 Graphs
Publication Year :
2017

Abstract

Background: Genomic prediction is a genomics assisted breeding methodology that can increase genetic gains by accelerating the breeding cycle and potentially improving the accuracy of breeding values. In this study, we use 41,304 informative SNPs genotyped in a Eucalyptus breeding population involving 90 E.grandis and 78 E.urophylla parents and their 949 F1 hybrids to develop genomic prediction models for eight phenotypic traits - basic density and pulp yield, circumference at breast height and height and tree volume scored at age three and six years. We assessed the impact of different genomic prediction methods, the composition and size of the training and validation set and the number and genomic location of SNPs on the predictive ability (PA). Results: Heritabilities estimated using the realized genomic relationship matrix (GRM) were considerably higher than estimates based on the expected pedigree, mainly due to inconsistencies in the expected pedigree that were readily corrected by the GRM. Moreover, the GRM more precisely capture Mendelian sampling among related individuals, such that the genetic covariance was based on the true proportion of the genome shared between individuals. PA improved considerably when increasing the size of the training set and by enhancing relatedness to the validation set. Prediction models trained on pure species parents could not predict well in F1 hybrids, indicating that model training has to be carried out in hybrid populations if one is to predict in hybrid selection candidates. The different genomic prediction methods provided similar results for all traits, therefore either GBLUP or rrBLUP represents better compromises between computational time and prediction efficiency. Only slight improvement was observed in PA when more than 5000 SNPs were used for all traits. Using SNPs in intergenic regions provided slightly better PA than using SNPs sampled exclusively in genic regions. Conclusions: The size and composition of the training set and number of SNPs used are the two most important factors for model prediction, compared to the statistical methods and the genomic location of SNPs. Furthermore, training the prediction model based on pure parental species only provide limited ability to predict traits in interspecific hybrids. Our results provide additional promising perspectives for the implementation of genomic prediction in Eucalyptus breeding programs by the selection of interspecific hybrids. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14712229
Volume :
17
Database :
Complementary Index
Journal :
BMC Plant Biology
Publication Type :
Academic Journal
Accession number :
123914994
Full Text :
https://doi.org/10.1186/s12870-017-1059-6