Back to Search
Start Over
ON THE STANLEY DEPTH AND SIZE OF MONOMIAL IDEALS.
- Source :
- Glasgow Mathematical Journal; Sep2017, Vol. 59 Issue 3, p705-715, 11p
- Publication Year :
- 2017
-
Abstract
- Let $\mathbb{K}$ be a field and S = ${\mathbb{K}}$[x1, . . ., xn] be the polynomial ring in n variables over the field $\mathbb{K}$. For every monomial ideal I ⊂ S, we provide a recursive formula to determine a lower bound for the Stanley depth of S/I. We use this formula to prove the inequality sdepth(S/I) ≥ size(I) for a particular class of monomial ideals. [ABSTRACT FROM PUBLISHER]
Details
- Language :
- English
- ISSN :
- 00170895
- Volume :
- 59
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Glasgow Mathematical Journal
- Publication Type :
- Academic Journal
- Accession number :
- 124452105
- Full Text :
- https://doi.org/10.1017/S0017089516000495