Back to Search Start Over

ON THE STANLEY DEPTH AND SIZE OF MONOMIAL IDEALS.

Authors :
SEYED FAKHARI, S. A.
Source :
Glasgow Mathematical Journal; Sep2017, Vol. 59 Issue 3, p705-715, 11p
Publication Year :
2017

Abstract

Let $\mathbb{K}$ be a field and S = ${\mathbb{K}}$[x1, . . ., xn] be the polynomial ring in n variables over the field $\mathbb{K}$. For every monomial ideal I ⊂ S, we provide a recursive formula to determine a lower bound for the Stanley depth of S/I. We use this formula to prove the inequality sdepth(S/I) ≥ size(I) for a particular class of monomial ideals. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
00170895
Volume :
59
Issue :
3
Database :
Complementary Index
Journal :
Glasgow Mathematical Journal
Publication Type :
Academic Journal
Accession number :
124452105
Full Text :
https://doi.org/10.1017/S0017089516000495