Back to Search Start Over

Instagram photos reveal predictive markers of depression.

Authors :
Reece, Andrew
Danforth, Christopher
Source :
EPJ Data Science; 8/8/2017, Vol. 6 Issue 1, p1-12, 12p
Publication Year :
2017

Abstract

Using Instagram data from 166 individuals, we applied machine learning tools to successfully identify markers of depression. Statistical features were computationally extracted from 43,950 participant Instagram photos, using color analysis, metadata components, and algorithmic face detection. Resulting models outperformed general practitioners' average unassisted diagnostic success rate for depression. These results held even when the analysis was restricted to posts made before depressed individuals were first diagnosed. Human ratings of photo attributes (happy, sad, etc.) were weaker predictors of depression, and were uncorrelated with computationally-generated features. These results suggest new avenues for early screening and detection of mental illness. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21931127
Volume :
6
Issue :
1
Database :
Complementary Index
Journal :
EPJ Data Science
Publication Type :
Academic Journal
Accession number :
124517515
Full Text :
https://doi.org/10.1140/epjds/s13688-017-0110-z