Back to Search Start Over

Understanding water structure from Raman spectra of isotopic substitution H2O/D2O up to 573 K.

Authors :
Hu, Qingcheng
Zhao, Haiwen
Ouyang, Shunli
Source :
Physical Chemistry Chemical Physics (PCCP); 8/28/2017, Vol. 19 Issue 32, p21540-21547, 8p
Publication Year :
2017

Abstract

The OH/OD stretch band on Raman spectra of water is complex, and understanding the spectral features based on water structure needs further study. This study investigates Raman spectra of isotopic substitution (IS) of water (with volume ratio V<subscript>H<subscript>2</subscript>O</subscript>/V<subscript>D<subscript>2</subscript>O</subscript> of 0/1, 1/4, 1/1, 4/1 and 1/0) at temperatures from 303 to 573 K. The data show that the OH and OD stretch band profiles are similar in their dependences on temperature and IS ratio. IS reduces the band widths at low temperatures but the reducing effect diminishes above ∼450 K, due to the largely enhanced intensity of the high-frequency shoulder (∼3650 cm<superscript>−1</superscript>/2690 cm<superscript>−1</superscript>), which turns into the main peak for the OH (or OD) stretch bands when V<subscript>H<subscript>2</subscript>O</subscript>/V<subscript>D<subscript>2</subscript>O</subscript> (or V<subscript>D<subscript>2</subscript>O</subscript>/V<subscript>H<subscript>2</subscript>O</subscript>) reaches 1/4 at temperatures over ∼510 K. These spectral features strongly indicate a multi-structure model stating that water has various local hydrogen bonding (HB) environments. Intermolecular vibrational couplings are important in determining the band width, while intramolecular vibrational couplings are not recommended for interpreting the OH/OD stretch band. Five dominant HB configurations are identified in water: two types of tetrahedral, single donor (SD) HB configuration, single hydrogen-bonded water (SHW), and free water (FW) without any hydrogen bonds, which are represented by five sub-bands. It is estimated that most (>50%) of the water molecules are in highly asymmetric HB environments (SD and SHW). The increase of temperature breaks HB structure and IS further promotes structure transition from tetrahedral to SD, SHW and FW. Then, number of hydrogen bonds in water are greatly reduced by temperature and IS. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14639076
Volume :
19
Issue :
32
Database :
Complementary Index
Journal :
Physical Chemistry Chemical Physics (PCCP)
Publication Type :
Academic Journal
Accession number :
124653050
Full Text :
https://doi.org/10.1039/c7cp02065a