Back to Search Start Over

Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice.

Authors :
Wu Jiang
Maoqiang Li
Fan He
Shaobo Zhou
Liulong Zhu
Jiang, Wu
Li, Maoqiang
He, Fan
Zhou, Shaobo
Zhu, Liulong
Source :
Journal of Neuroinflammation; 10/25/2017, Vol. 14, p1-12, 12p
Publication Year :
2017

Abstract

<bold>Background: </bold>Spinal cord injury (SCI) is a devastating disease, which results in tissue loss and neurologic dysfunction. NLRP3 inflammasome plays an important role in the mechanism of diverse diseases. However, no studies have demonstrated the role of NLRP3 inflammasome and the effects of NLRP3 inflammasome inhibitors in a mouse model of SCI. We investigated whether inhibition of NLRP3 inflammasome activation by the pharmacologic inhibitor BAY 11-7082 or A438079 could exert neuroprotective effects in a mouse model of SCI.<bold>Methods: </bold>SCI was performed using an aneurysm clip with a closing force of 30 g at the level of the T6-T7 vertebra for 1 min. Motor recovery was evaluated by an open-field test. Neuronal death was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling and Nissl staining. Mitochondrial dysfunction was determined by quantitative real-time polymerase chain reaction (qPCR), western blot, and detection of mitochondrial membrane potential level. Microglia/macrophage activation and astrocytic response were evaluated by immunofluorescence labeling.<bold>Results: </bold>Inhibition of NLRP3 inflammasome activation by pharmacologic inhibitor BAY 11-7082 or A438079 reduced neuronal death, attenuated spinal cord anatomic damage, and promoted motor recovery. Furthermore, BAY 11-7082 or A438079 directly attenuated the levels of NLRP3 inflammasome and proinflammatory cytokines. Moreover, BAY 11-7082 or A438079 alleviated microglia/macrophage activation, neutrophils infiltration, and reactive gliosis, as well as mitochondrial dysfunction.<bold>Conclusions: </bold>Collectively, our results demonstrate that pharmacologic suppression of NLRP3 inflammasome activation controls neuroinflammation, attenuates mitochondrial dysfunction, alleviates the severity of spinal cord damage, and improves neurological recovery after SCI. These data strongly indicate that the NLRP3 inflammasome is a vital contributor to the secondary damage of SCI in mice. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17422094
Volume :
14
Database :
Complementary Index
Journal :
Journal of Neuroinflammation
Publication Type :
Academic Journal
Accession number :
125917877
Full Text :
https://doi.org/10.1186/s12974-017-0980-9