Back to Search Start Over

High-performance fractional order terminal sliding mode control strategy for DC-DC Buck converter.

Authors :
Wang, Jianlin
Xu, Dan
Zhou, Huan
Bai, Anning
Lu, Wei
Source :
PLoS ONE; 10/30/2017, Vol. 12 Issue 10, p1-10, 10p
Publication Year :
2017

Abstract

This paper presents an adaption of the fractional order terminal sliding mode control (AFTSMC) strategy for DC-DC Buck converter. The following strategy aims to design a novel nonlinear sliding surface function, with a double closed-loop structure of voltage and current. This strategy is a fusion of two characteristics: terminal sliding mode control (TSMC) and fractional order calculation (FOC). In addition, the influence of “the controller parameters” on the “performance of double closed-loop system” is investigated. It is observed that the value of terminal power has to be chosen to make a compromise between start-up and transient response of the converter. Therefore the AFTSMC strategy chooses the value of the terminal power adaptively, and this strategy can lead to the appropriate number of fractional order as well. Furthermore, through the fractional order analysis, the system can reach the sliding mode surface in a finite time. And the theoretical considerations are verified by numerical simulation. The performance of the AFTSMC and TSMC strategies is tested by computer simulations. And the comparison simulation results show that the AFTSMC exhibits a considerable improvement in terms of a faster output voltage response during load changes. Moreover, AFTSMC obtains a faster dynamical response, smaller steady-state error rate and lower overshoot. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
12
Issue :
10
Database :
Complementary Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
125953239
Full Text :
https://doi.org/10.1371/journal.pone.0187152