Back to Search Start Over

Improved Transient Response Estimations in Predicting 40Hz Auditory Steady-State Response Using Deconvolution Methods.

Authors :
Xiaodan Tan
Qiuyang Fu
Han Yuan
Lei Ding
Tao Wang
Source :
Frontiers in Neuroscience; 12/12/2017, p1-15, 15p
Publication Year :
2017

Abstract

The auditory steady-state response (ASSR) is one of the main approaches in clinic for health screening and frequency-specific hearing assessment. However, its generation mechanism is still of much controversy. In the present study, the linear superposition hypothesis for the generation of ASSRs was investigated by comparing the relationships between the classical 40Hz ASSR and three synthetic ASSRs obtained from three different templates for transient auditory evoked potential (AEP). These three AEPs are the traditional AEP at 5Hz and two 40Hz AEPs derived from two deconvolution algorithms using stimulus sequences, i.e., continuous loop averaging deconvolution (CLAD) and multi-rate steady-state average deconvolution (MSAD). CLAD requires irregular inter-stimulus intervals (ISIs) in the sequence while MSAD uses the same ISIs but evenly-spaced stimulus sequences which mimics the classical 40Hz ASSR. It has been reported that these reconstructed templates show similar patterns but significant difference in morphology and distinct frequency characteristics in synthetic ASSRs. The prediction accuracies of ASSR using these templates show significant differences (p < 0.05) in 45.95, 36.28, and 10.84% of total time points within four cycles of ASSR for the traditional, CLAD, and MSAD templates, respectively, as compared with the classical 40Hz ASSR, and the ASSR synthesized from the MSAD transient AEP suggests the best similarity. And such a similarity is also demonstrated at individuals only in MSAD showing no statistically significant difference (Hotelling's T<superscript>2</superscript> test, T<superscript>2</superscript> = 6.96, F = 0.80, p = 0.592) as compared with the classical 40Hz ASSR. The present results indicate that both stimulation rate and sequencing factor (ISI variation) affect transient AEP reconstructions fromsteady-state stimulation protocols. Furthermore, both auditory brainstem response (ABR) and middle latency response (MLR) are observed in contributing to the composition of ASSR but with variable weights in three templates. The significantly improved prediction accuracy of ASSR achieved by MSAD strongly supports the linear superposition mechanism of ASSR if an accurate template of transient AEPs can be reconstructed. The capacity in obtaining both ASSR and its underlying transient components accurately and simultaneously has the potential to contribute significantly to diagnosis of patients with neuropsychiatric disorders. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16624548
Database :
Complementary Index
Journal :
Frontiers in Neuroscience
Publication Type :
Academic Journal
Accession number :
126750655
Full Text :
https://doi.org/10.3389/fnins.2017.00697