Back to Search
Start Over
Modeling the effects of tree species and incubation temperature on soil's extracellular enzyme activity in 78-year-old tree plantations.
- Source :
- Biogeosciences; 2017, Vol. 14 Issue 23, p5393-5402, 10p, 2 Charts, 6 Graphs
- Publication Year :
- 2017
-
Abstract
- Forest plantations have been widely used as an effective measure for increasing soil carbon (C), and nitrogen (N) stocks and soil enzyme activities play a key role in soil C and N losses during decomposition of soil organic matter. However, few studies have been carried out to elucidate the mechanisms behind the differences in soil C and N cycling by different tree species in response to climate warming. Here, we measured the responses of soil's extracellular enzyme activity (EEA) to a gradient of temperatures using incubation methods in 78-year-old forest plantations with different tree species. Based on a soil enzyme kinetics model, we established a new statistical model to investigate the effects of temperature and tree species on soil EEA. In addition, we established a tree species-enzyme-C=N model to investigate how temperature and tree species influence soil C=N contents over time without considering plant C inputs. These extracellular enzymes included C acquisition enzymes (β-glucosidase, BG), N acquisition enzymes (N-acetylglucosaminidase, NAG; leucine aminopeptidase, LAP) and phosphorus acquisition enzymes (acid phosphatases). The results showed that incubation temperature and tree species significantly influenced all soil EEA and Eucalyptus had 1.01-2.86 times higher soil EEA than coniferous tree species. Modeling showed that Eucalyptus had larger soil C losses but had 0.99-2.38 times longer soil C residence time than the coniferous tree species over time. The differences in the residual soil C and N contents between Eucalyptus and coniferous tree species, as well as between slash pine (Pinus elliottii Engelm. var. elliottii) and hoop pine (Araucaria cunninghamii Ait.), increase with time. On the other hand, the modeling results help explain why exotic slash pine can grow faster, as it has 1.22-1.38 times longer residual soil N residence time for LAP, which mediate soil N cycling in the long term, than native coniferous tree species like hoop pine and kauri pine (Agathis robusta C. Moore). Our results will be helpful for understanding the mechanisms of soil C and N cycling by different tree species, which will have implications for forest management. [ABSTRACT FROM AUTHOR]
- Subjects :
- SOIL enzymology
TREE farms
CARBON in soils
NITROGEN in soils
HUMUS
Subjects
Details
- Language :
- English
- ISSN :
- 17264170
- Volume :
- 14
- Issue :
- 23
- Database :
- Complementary Index
- Journal :
- Biogeosciences
- Publication Type :
- Academic Journal
- Accession number :
- 126853601
- Full Text :
- https://doi.org/10.5194/bg-14-5393-2017