Back to Search Start Over

Competing Influences of Anthropogenic Warming, ENSO, and Plant Physiology on Future Terrestrial Aridity.

Authors :
Bonfils, Céline
Anderson, Gemma
Santer, Benjamin D.
Phillips, Thomas J.
Taylor, Karl E.
Cuntz, Matthias
Zelinka, Mark D.
Marvel, Kate
Cook, Benjamin I.
Cvijanovic, Ivana
Durack, Paul J.
Source :
Journal of Climate; Sep2017, Vol. 30 Issue 17, p6883-6904, 22p
Publication Year :
2017

Abstract

The 2011-16 California drought illustrates that drought-prone areas do not always experience relief once a favorable phase of El Niño-Southern Oscillation (ENSO) returns. In the twenty-first century, such an expectation is unrealistic in regions where global warming induces an increase in terrestrial aridity larger than the changes in aridity driven by ENSO variability. This premise is also flawed in areas where precipitation supply cannot offset the global warming-induced increase in evaporative demand. Here, atmosphere-only experiments are analyzed to identify land regions where aridity is currently sensitive to ENSO and where projected future changes in mean aridity exceed the range caused by ENSO variability. Insights into the drivers of these changes in aridity are obtained using simulations with the incremental addition of three different factors to the current climate: ocean warming, vegetation response to elevated CO<subscript>2</subscript> levels, and intensified CO<subscript>2</subscript> radiative forcing. The effect of ocean warming overwhelms the range of ENSO-driven temperature variability worldwide, increasing potential evapotranspiration (PET) in most ENSO-sensitive regions. Additionally, about 39% of the regions currently sensitive to ENSO will likely receive less precipitation in the future, independent of the ENSO phase. Consequently aridity increases in 67%-72% of the ENSO-sensitive area. When both radiative and physiological effects are considered, the area affected by arid conditions rises to 75%-79% when using PET-derived measures of aridity, but declines to 41% when an aridity indicator for total soil moisture is employed. This reduction mainly occurs because plant stomatal resistance increases under enhanced CO<subscript>2</subscript> concentrations, resulting in improved plant water-use efficiency, and hence reduced evapotranspiration and soil desiccation. Imposing CO<subscript>2</subscript>-invariant stomatal resistance may overestimate future drying in PET-derived indices. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08948755
Volume :
30
Issue :
17
Database :
Complementary Index
Journal :
Journal of Climate
Publication Type :
Academic Journal
Accession number :
126889805
Full Text :
https://doi.org/10.1175/JCLI-D-17-0005.1