Back to Search Start Over

Cyanide‐Assembled d10 Coordination Polymers and Cycles: Excited State Metallophilic Modulation of Solid‐State Luminescence.

Authors :
Belyaev, Andrey
Eskelinen, Toni
Dau, Thuy Minh
Ershova, Yana Yu.
Tunik, Sergey P.
Melnikov, Alexei S.
Hirva, Pipsa
Koshevoy, Igor O.
Source :
Chemistry - A European Journal; 1/26/2018, Vol. 24 Issue 6, p1404-1415, 12p
Publication Year :
2018

Abstract

Abstract: The series of cyanide‐bridged coordination polymers [(<italic><bold>P</bold></italic><superscript><bold>2</bold></superscript>)CuCN]<subscript><italic>n</italic></subscript> (<bold>1</bold>), [(<italic><bold>P</bold></italic><superscript><bold>2</bold></superscript>)Cu{M(CN)<subscript>2</subscript>}]<subscript><italic>n</italic></subscript> (M=Cu <bold>3</bold>, Ag <bold>4</bold>, Au <bold>5</bold>) and molecular tetrametallic clusters [{(<italic><bold>P</bold></italic><superscript><bold>4</bold></superscript>)MM'(CN)}<subscript>2</subscript>]<superscript>2+</superscript> (MM′=Cu<subscript>2</subscript><bold>6</bold>, Ag<subscript>2</subscript><bold>7</bold>, AgCu <bold>8</bold>, AuCu <bold>9</bold>, AuAg <bold>10</bold>) were obtained using the bidentate <italic><bold>P</bold></italic><superscript><bold>2</bold></superscript> and tetradentate <italic><bold>P</bold></italic><superscript><bold>4</bold></superscript> phosphane ligands (<italic><bold>P</bold></italic><superscript><bold>2</bold></superscript>=1,2‐bis(diphenylphosphino)benzene; <italic><bold>P</bold></italic><superscript><bold>4</bold></superscript>=tris(2‐diphenylphosphinophenyl)phosphane). All title complexes were crystallographically characterized to reveal a zig‐zag chain arrangement for <bold>1</bold> and <bold>3</bold>–<bold>5</bold>, whereas <bold>6</bold>–<bold>10</bold> possess metallocyclic frameworks with different degree of metal‐metal bonding. The d<superscript>10</superscript>–d<superscript>10</superscript> interactions were evaluated by the quantum theory of atoms in molecules (QTAIM) computational approach. The photophysical properties of <bold>1</bold>–<bold>10</bold> were investigated in the solid state and supported by theoretical analysis. The emission of compounds <bold>1</bold> and <bold>3</bold>–<bold>5</bold>, dominated by metal‐to‐ligand charge transfer (MLCT) transitions located within {Cu<italic><bold>P</bold></italic><superscript><bold>2</bold></superscript>} motifs, is compatible with thermally activated delayed fluorescence (TADF) behaviour and a small energy gap between the <italic>T<subscript>1</subscript></italic> and <italic>S<subscript>1</subscript></italic> excited states. The luminescence characteristics of <bold>6</bold>–<bold>10</bold> are strongly dependent on the composition of the metal core; the emission band maxima vary in the range 484–650 nm with quantum efficiency reaching 0.56 (<bold>6</bold>). The origin of the emission for <bold>6</bold>–<bold>8</bold> and <bold>10</bold> at room temperature is assigned to delayed fluorescence. AuCu cluster <bold>9</bold>, however, exhibits only phosphorescence that corresponds to theoretically predicted large value Δ<italic>E</italic>(<italic>S<subscript>1</subscript></italic>−<italic>T<subscript>1</subscript></italic>). DFT simulation highlights a crucial impact of metallophilic bonding on the nature and energy of the observed emission, the effect being greatly enhanced in the excited state. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09476539
Volume :
24
Issue :
6
Database :
Complementary Index
Journal :
Chemistry - A European Journal
Publication Type :
Academic Journal
Accession number :
127564542
Full Text :
https://doi.org/10.1002/chem.201704642