Back to Search Start Over

Exploring the potential relationship between indoor air quality and the concentration of airborne culturable fungi: a combined experimental and neural network modeling study.

Authors :
Liu, Zhijian
Wu, Di
Cheng, Kewei
Li, Hao
Cao, Guoqing
Shi, Yunjie
Source :
Environmental Science & Pollution Research; Feb2018, Vol. 25 Issue 4, p3510-3517, 8p
Publication Year :
2018

Abstract

Indoor airborne culturable fungi exposure has been closely linked to occupants’ health. However, conventional measurement of indoor airborne fungal concentration is complicated and usually requires around one week for fungi incubation in laboratory. To provide an ultra-fast solution, here, for the first time, a knowledge-based machine learning model is developed with the inputs of indoor air quality data for estimating the concentration of indoor airborne culturable fungi. To construct a database for statistical analysis and model training, 249 data groups of air quality indicators (concentration of indoor airborne culturable fungi, indoor/outdoor PM<subscript>2.5</subscript> and PM<subscript>10</subscript> concentrations, indoor temperature, indoor relative humidity, and indoor CO<subscript>2</subscript> concentration) were measured from 85 residential buildings of Baoding (China) during the period of 2016.11.15–2017.03.15. Our results show that artificial neural network (ANN) with one hidden layer has good prediction performances, compared to a support vector machine (SVM). With the tolerance of ± 30%, the prediction accuracy of the ANN model with ten hidden nodes can at highest reach 83.33% in the testing set. Most importantly, we here provide a quick method for estimating the concentration of indoor airborne fungi that can be applied to real-time evaluation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09441344
Volume :
25
Issue :
4
Database :
Complementary Index
Journal :
Environmental Science & Pollution Research
Publication Type :
Academic Journal
Accession number :
127989687
Full Text :
https://doi.org/10.1007/s11356-017-0708-5