Back to Search
Start Over
Quillen-Suslin theory for the special linear group.
- Source :
- Communications in Algebra; 2018, Vol. 46 Issue 4, p1476-1483, 8p
- Publication Year :
- 2018
-
Abstract
- We prove that for any valuation ring <italic>R</italic> of Krull dimension ≤1 or any commutative local ring <italic>R</italic> with Krull dimension 0 and <italic>n</italic>≥3, the special linear group <italic>S</italic><italic>L</italic><subscript><italic>n</italic></subscript>(<italic>R</italic>[<italic>x</italic>]) coincides with the group of elementary matrices <italic>E</italic><subscript><italic>n</italic></subscript>(<italic>R</italic>[<italic>x</italic>]), and for an arbitrary arithmetical ring <italic>R</italic> of Krull dimension ≤1 and <italic>n</italic>≥3, the group <inline-graphic></inline-graphic>. These give partial solutions to two conjectures of Yengui. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00927872
- Volume :
- 46
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Communications in Algebra
- Publication Type :
- Academic Journal
- Accession number :
- 128734580
- Full Text :
- https://doi.org/10.1080/00927872.2017.1347658