Back to Search Start Over

Quillen-Suslin theory for the special linear group.

Authors :
Liu, Jinwang
Li, Dongmei
Chen, Shexi
Source :
Communications in Algebra; 2018, Vol. 46 Issue 4, p1476-1483, 8p
Publication Year :
2018

Abstract

We prove that for any valuation ring <italic>R</italic> of Krull dimension ≤1 or any commutative local ring <italic>R</italic> with Krull dimension 0 and <italic>n</italic>≥3, the special linear group <italic>S</italic><italic>L</italic><subscript><italic>n</italic></subscript>(<italic>R</italic>[<italic>x</italic>]) coincides with the group of elementary matrices <italic>E</italic><subscript><italic>n</italic></subscript>(<italic>R</italic>[<italic>x</italic>]), and for an arbitrary arithmetical ring <italic>R</italic> of Krull dimension ≤1 and <italic>n</italic>≥3, the group <inline-graphic></inline-graphic>. These give partial solutions to two conjectures of Yengui. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00927872
Volume :
46
Issue :
4
Database :
Complementary Index
Journal :
Communications in Algebra
Publication Type :
Academic Journal
Accession number :
128734580
Full Text :
https://doi.org/10.1080/00927872.2017.1347658