Back to Search Start Over

Analysis, Modeling, and Design Considerations for the Excitation Systems of Synchronous Generators.

Authors :
Nuzzo, Stefano
Galea, Michael
Gerada, Chris
Brown, Neil
Source :
IEEE Transactions on Industrial Electronics; Apr2018, Vol. 65 Issue 4, p2996-3007, 12p
Publication Year :
2018

Abstract

The traditional generating set is usually comprised of a classical, wound-field, salient-pole, or cylindrical rotor synchronous generator, excited by a separate smaller machine, via a rotating, uncontrolled diode rectifier. The effects of the commutation processes of the diode bridge are often overlooked and neglected. However, due to the uncontrolled nature of this process, the rectified voltage available at the main generator's rotor terminals can be significantly lower than the expected value. This is especially true for low-to-medium power rated systems. In this paper, a detailed investigation of these aspects is done and an accurate voltage drop prediction model is then proposed. The model is validated with finite-element analysis and with experimental results for a particular low–medium rated generating system in the 400 kVA power range. The validated tool is then integrated into an innovative design tool, which first performs an analytical presizing procedure and then utilizes a genetic algorithm approach to identify an optimal excitation system design, aimed at minimizing the voltage drop ensuing from the diode commutations, with minimum impact on the overall efficiency. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02780046
Volume :
65
Issue :
4
Database :
Complementary Index
Journal :
IEEE Transactions on Industrial Electronics
Publication Type :
Academic Journal
Accession number :
128934434
Full Text :
https://doi.org/10.1109/TIE.2017.2756592