Back to Search Start Over

Faltings’ local-global principle for the in dimension <<italic>n</italic> of local cohomology modules.

Authors :
Naghipour, Reza
Maddahali, Robabeh
Ahmadi Amoli, Khadijeh
Source :
Communications in Algebra; 2018, Vol. 46 Issue 8, p3496-3509, 14p
Publication Year :
2018

Abstract

The concept of Faltings’ local-global principle for the in dimension &lt;&lt;italic&gt;n&lt;/italic&gt; of local cohomology modules over a Noetherian ring &lt;italic&gt;R&lt;/italic&gt; is introduced, and it is shown that this principle holds at levels 1, 2. We also establish the same principle at all levels over an arbitrary Noetherian ring of dimension not exceeding 3. These generalize the main results of Brodmann et al. [&lt;xref&gt;8&lt;/xref&gt;]. Moreover, as a generalization of Raghavan’s result, we show that the Faltings’ local-global principle for the in dimension &lt;&lt;italic&gt;n&lt;/italic&gt; of local cohomology modules holds at all levels &lt;italic&gt;r&lt;/italic&gt;∈&lt;italic&gt;ℕ&lt;/italic&gt; whenever the ring &lt;italic&gt;R&lt;/italic&gt; is a homomorphic image of a Noetherian Gorenstein ring. Finally, it is shown that if &lt;italic&gt;M&lt;/italic&gt; is a finitely generated &lt;italic&gt;R&lt;/italic&gt;-module, &lt;italic&gt;픞&lt;/italic&gt; an ideal of &lt;italic&gt;R&lt;/italic&gt; and &lt;italic&gt;r&lt;/italic&gt; a non-negative integer such that &lt;inline-graphic&gt;&lt;/inline-graphic&gt; is in dimension &lt; 2 for all &lt;italic&gt;i&lt;/italic&gt;&lt;&lt;italic&gt;r&lt;/italic&gt; and for some positive integer &lt;italic&gt;t&lt;/italic&gt;, then for any minimax submodule &lt;italic&gt;N&lt;/italic&gt; of &lt;inline-graphic&gt;&lt;/inline-graphic&gt;, the &lt;italic&gt;R&lt;/italic&gt;-module &lt;inline-graphic&gt;&lt;/inline-graphic&gt; is finitely generated. As a consequence, it follows that the associated primes of &lt;inline-graphic&gt;&lt;/inline-graphic&gt; are finite. This generalizes the main results of Brodmann-Lashgari [&lt;xref&gt;7&lt;/xref&gt;] and Quy [&lt;xref&gt;24&lt;/xref&gt;]. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00927872
Volume :
46
Issue :
8
Database :
Complementary Index
Journal :
Communications in Algebra
Publication Type :
Academic Journal
Accession number :
129211278
Full Text :
https://doi.org/10.1080/00927872.2017.1412453