Back to Search Start Over

Deubiquitylases USP5 and USP13 are recruited to and regulate heat-induced stress granules through their deubiquitylating activities.

Authors :
Xuan Xie
Shunsuke Matsumoto
Akinori Endo
Toshiaki Fukushima
Hiroyuki Kawahara
Yasushi Saeki
Masayuki Komada
Source :
Journal of Cell Science; 4/15/2018, Vol. 131 Issue 8, p1-11, 11p
Publication Year :
2018

Abstract

Stress granules are transient cytoplasmic foci induced by various stresses that contain translation-stalled mRNAs and RNA-binding proteins. They are proposed to modulate mRNA translation and stress responses. Here, we show that the deubiquitylases USP5 and USP13 are recruited to heat-induced stress granules. Heat-induced stress granules also contained K48- and K63-linked ubiquitin chains. Depletion of USP5 or USP13 resulted in elevated ubiquitin chain levels and accelerated assembly of heat-induced stress granules, suggesting that these enzymes regulate the stability of the stress granules through their ubiquitin isopeptidase activity. Moreover, disassembly of heat-induced stress granules after returning the cells to normal temperatures was markedly repressed by individual depletion of USP5 or USP13. Finally, overexpression of a ubiquitin mutant lacking the C-terminal diglycine motif caused the accumulation of unanchored ubiquitin chains and the repression of the disassembly of heat-induced stress granules. As unanchored ubiquitin chains are preferred substrates for USP5, we suggest that USP5 regulates the assembly and disassembly of heat-induced stress granules by mediating the hydrolysis of unanchored ubiquitin chains while USP13 regulates stress granules through deubiquitylating protein-conjugated ubiquitin chains. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219533
Volume :
131
Issue :
8
Database :
Complementary Index
Journal :
Journal of Cell Science
Publication Type :
Academic Journal
Accession number :
129515407
Full Text :
https://doi.org/10.1242/jcs.210856