Back to Search Start Over

Combining Survey Long-Run Forecasts and Nowcasts with BVAR Forecasts Using Relative Entropy.

Authors :
Tallman, Ellis W.
Zaman, Saeed
Source :
Working Paper Series (Federal Reserve Bank of Cleveland); 6/22/2018, p1-51, 51p
Publication Year :
2018

Abstract

This paper constructs hybrid forecasts that combine both short- and longterm conditioning information from external surveys with forecasts from a standard fi xed-coefficient vector autoregression (VAR) model. Specifically, we use relative entropy to tilt one-step ahead and long-horizon VAR forecasts to match the nowcast and long-horizon forecast from the Survey of Professional Forecasters. The results indicate meaningful gains in multi-horizon forecast accuracy relative to model forecasts that do not incorporate long-term survey conditions. The accuracy gains are achieved for a range of variables, including those that are not directly tilted but are affected through spillover effects from tilted variables. The forecast accuracy gains for infl ation are substantial, statistically significant, and are competitive with the forecast accuracy from both time-varying VARs and univariate benchmarks. We view our proposal as an indirect approach to accommodating structural change and moving end points. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
25737945
Database :
Complementary Index
Journal :
Working Paper Series (Federal Reserve Bank of Cleveland)
Publication Type :
Report
Accession number :
130376870
Full Text :
https://doi.org/10.26509/frbc-wp-201809