Back to Search Start Over

Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol.

Authors :
Bouzid, Mehdi
Keshavarz, Bavand
Geri, Michela
Divoux, Thibaut
Del Gado, Emanuela
McKinley, Gareth H.
Source :
Journal of Rheology; Jul2018, Vol. 62 Issue 4, p1037-1050, 14p
Publication Year :
2018

Abstract

We use molecular dynamics simulations to investigate the linear viscoelastic response of a model three-dimensional particulate gel. The numerical simulations are combined with a novel test protocol (the optimally windowed chirp or OWCh), in which a continuous exponentially varying frequency sweep windowed by a tapered cosine function is applied. The mechanical response of the gel is then analyzed in the Fourier domain. We show that (i) OWCh leads to an accurate computation of the full frequency spectrum at a rate significantly faster than with the traditional discrete frequency sweeps, and with a reasonably high signal-to-noise ratio, and (ii) the bulk viscoelastic response of the microscopic model can be described in terms of a simple mesoscopic constitutive model. The simulated gel response is in fact well described by a mechanical model corresponding to a fractional Kelvin-Voigt model with a single Scott-Blair (or springpot) element and a spring in parallel. By varying the viscous damping and the particle mass used in the microscopic simulations over a wide range of values, we demonstrate the existence of a single master curve for the frequency dependence of the viscoelastic response of the gel that is fully predicted by the constitutive model. By developing a fast and robust protocol for evaluating the linear viscoelastic spectrum of these soft solids, we open the path toward novel multiscale insight into the rheological response for such complex materials. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01486055
Volume :
62
Issue :
4
Database :
Complementary Index
Journal :
Journal of Rheology
Publication Type :
Academic Journal
Accession number :
130767740
Full Text :
https://doi.org/10.1122/1.5018715