Back to Search Start Over

Hybrid Battery/Lithium-Ion Capacitor Energy Storage System for a Pure Electric Bus for an Urban Transportation Application.

Authors :
Soltani, Mahdi
Ronsmans, Jan
Kakihara, Shouji
Jaguemont, Joris
Van den Bossche, Peter
van Mierlo, Joeri
Omar, Noshin
Source :
Applied Sciences (2076-3417); Jul2018, Vol. 8 Issue 7, p1176, 19p
Publication Year :
2018

Abstract

Featured Application: <bold>A potential application for this research work is the pure electric bus with energy recovery capability. With the hybrid energy storage system based on Lithium-ion battery and Lithium-ion Capacitor, the bus will have a longer range, a higher efficiency and a lower cost in comparison to a bus with non-hybrid energy storage system or a bus with hybrid energy storage based on battery and super-capacitors.</bold> Public transportation based on electric vehicles has attracted significant attention in recent years due to the lower overall emissions it generates. However, there are some barriers to further development and commercialization. Fewer charging facilities in comparison to gas stations, limited battery lifetime, and extra costs associated with its replacement present some barriers to achieve better acceptance. A practical solution to improve the battery lifetime and driving range is to eliminate the large-magnitude pulse current flow from and to the battery during acceleration and deceleration. Hybrid energy storage systems which combine high-power (HP) and high-energy (HE) storage units can be used for this purpose. Lithium-ion capacitors (LiC) can be used as a HP storage unit, which is similar to a supercapacitor cell but with a higher rate capability, a higher energy density, and better cyclability. In this design, the LiC can provide the excess power required while the battery fails to do so. Moreover, hybridization enables a downsizing of the overall energy storage system and decreases the total cost as a consequence of lifetime, performance, and efficiency improvement. The aim of this paper is to investigate the effectiveness of the hybrid energy storage system in protecting the battery from damage due to the high-power rates during charging and discharging. The procedure followed and presented in this paper demonstrates the good performance of the evaluated hybrid storage system to reduce the negative consequences of the power peaks associated with urban driving cycles and its ability to improve the lifespan by 16%. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
8
Issue :
7
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
131243986
Full Text :
https://doi.org/10.3390/app8071176