Back to Search Start Over

Plasmodium vivax-like genome sequences shed new insights into Plasmodium vivax biology and evolution.

Authors :
Gilabert, Aude
Otto, Thomas D.
Rutledge, Gavin G.
Franzon, Blaise
Ollomo, Benjamin
Arnathau, Céline
Durand, Patrick
Moukodoum, Nancy D.
Okouga, Alain-Prince
Ngoubangoye, Barthélémy
Makanga, Boris
Boundenga, Larson
Paupy, Christophe
Renaud, François
Prugnolle, Franck
Rougeron, Virginie
Source :
PLoS Biology; 8/24/2018, Vol. 16 Issue 8, p1-25, 25p, 3 Diagrams, 2 Charts
Publication Year :
2018

Abstract

Although Plasmodium vivax is responsible for the majority of malaria infections outside Africa, little is known about its evolution and pathway to humans. Its closest genetic relative, P. vivax-like, was discovered in African great apes and is hypothesized to have given rise to P. vivax in humans. To unravel the evolutionary history and adaptation of P. vivax to different host environments, we generated using long- and short-read sequence technologies 2 new P. vivax-like reference genomes and 9 additional P. vivax-like genotypes. Analyses show that the genomes of P. vivax and P. vivax-like are highly similar and colinear within the core regions. Phylogenetic analyses clearly show that P. vivax-like parasites form a genetically distinct clade from P. vivax. Concerning the relative divergence dating, we show that the evolution of P. vivax in humans did not occur at the same time as the other agents of human malaria, thus suggesting that the transfer of Plasmodium parasites to humans happened several times independently over the history of the Homo genus. We further identify several key genes that exhibit signatures of positive selection exclusively in the human P. vivax parasites. Two of these genes have been identified to also be under positive selection in the other main human malaria agent, P. falciparum, thus suggesting their key role in the evolution of the ability of these parasites to infect humans or their anthropophilic vectors. Finally, we demonstrate that some gene families important for red blood cell (RBC) invasion (a key step of the life cycle of these parasites) have undergone lineage-specific evolution in the human parasite (e.g., reticulocyte-binding proteins [RBPs]). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15449173
Volume :
16
Issue :
8
Database :
Complementary Index
Journal :
PLoS Biology
Publication Type :
Academic Journal
Accession number :
131416609
Full Text :
https://doi.org/10.1371/journal.pbio.2006035