Back to Search Start Over

Porous Nanoparticles With Self-Adjuvanting M2e-Fusion Protein and Recombinant Hemagglutinin Provide Strong and Broadly Protective Immunity Against Influenza Virus Infections.

Authors :
Bernasconi, Valentina
Bernocchi, Beatrice
Liang Ye
Minh Quan Lê
Omokanye, Ajibola
Carpentier, Rodolphe
Schön, Karin
Saelens, Xavier
Staeheli, Peter
Betbeder, Didier
Lycke, Nils
Source :
Frontiers in Immunology; 9/12/2018, p1-15, 15p
Publication Year :
2018

Abstract

Due to the high risk of an outbreak of pandemic influenza, the development of a broadly protective universal influenza vaccine is highly warranted. The design of such a vaccine has attracted attention and much focus has been given to nanoparticle-based influenza vaccines which can be administered intranasally. This is particularly interesting since, contrary to injectable vaccines, mucosal vaccines elicit local IgA and lung resident T cell immunity, which have been found to correlate with stronger protection in experimental models of influenza virus infections. Also, studies in human volunteers have indicated that pre-existing CD4+ T cells correlate well to increased resistance against infection. We have previously developed a fusion protein with 3 copies of the ectodomain of matrix protein 2 (M2e), which is one of the most explored conserved influenza A virus antigens for a broadly protective vaccine known today. To improve the protective ability of the self-adjuvanting fusion protein, CTA1-3M2e-DD, we incorporated it into porous maltodextrin nanoparticles (NPLs). This proof-of-principle study demonstrates that the combined vaccine vector given intranasally enhanced immune protection against a live challenge infection and reduced the risk of virus transmission between immunized and unimmunized individuals. Most importantly, immune responses to NPLs that also contained recombinant hemagglutinin (HA) were strongly enhanced in a CTA1-enzyme dependentmanner and we achieved broadly protective immunity against a lethal infection with heterosubtypic influenza virus. Immune protection wasmediated by enhanced levels of lung resident CD4+ T cells as well as anti-HA and -M2e serum IgG and local IgA antibodies. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16643224
Database :
Complementary Index
Journal :
Frontiers in Immunology
Publication Type :
Academic Journal
Accession number :
131758002
Full Text :
https://doi.org/10.3389/fimmu.2018.02060