Back to Search Start Over

Fuzzy Rough C-Mean Based Unsupervised CNN Clustering for Large-Scale Image Data.

Authors :
Riaz, Saman
Arshad, Ali
Jiao, Licheng
Source :
Applied Sciences (2076-3417); Oct2018, Vol. 8 Issue 10, p1869, 20p
Publication Year :
2018

Abstract

Deep learning has been well-known for a couple of years, and it indicates incredible possibilities for unsupervised learning of representations with the clustering algorithm. The forms of Convolution Neural Networks (CNN) are now state-of-the-art for many recognition and clustering tasks. However, with the perpetual incrementation of digital images, there exist more and more redundant, irrelevant, and noisy samples which cause CNN running to gradually decrease, and its clustering accuracy decreases concurrently. To conquer these issues, we proposed an effective clustering method for a large-scale image dataset which combines CNN and a Fuzzy-Rough C-Mean (FRCM) clustering algorithm. The main idea is that first a high-level representation, learned by multi-layers of CNN with one clustering layer, produce the initial cluster center, then during training image clusters, and representations, are updating jointly. FRCM is utilized to update the cluster centers in the forward pass, while the parameters of proposed CNN are updated by the backward pass based on Stochastic Gradient Descent (SGD). The concept of the rough set of lower and boundary approximations deal with uncertainty, vagueness, and incompleteness in cluster definition, and fuzzy sets enable efficient handling of overlapping partitions in the noisy environment. The experiment results show that the proposed FRCM based unsupervised CNN clustering method is better than the standard K-Mean, Fuzzy C-Mean, FRCM and also other deep-learning-based clustering algorithms on large-scale image data. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
8
Issue :
10
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
132686691
Full Text :
https://doi.org/10.3390/app8101869