Back to Search Start Over

Estimation of Corn Yield by Assimilating SAR and Optical Time Series Into a Simplified Agro-Meteorological Model: From Diagnostic to Forecast.

Authors :
Ameline, Mael
Fieuzal, Remy
Betbeder, Julie
Berthoumieu, Jean-Francois
Baup, Frederic
Source :
IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing; Dec2018, Vol. 11 Issue 12, p4747-4760, 14p
Publication Year :
2018

Abstract

The estimation of crop yield plays a major role in decision making and management of food supply. This paper aims to estimate corn dry masses and grain yield at field scale using an agro-meteorological model. The SAFY-WB model (simple algorithm for yield model combined with a water balance) is controlled by green area index (GAI) derived from optical satellite images (GAIopt), and the GAI derived from synthetic aperture radar (SAR) satellite images (GAIsar) acquired over two crop seasons (2015 and 2016) in the south-west of France. Landsat-8 mission provides the optical data. SAR information ($\sigma _{{\rm{VV}}}^\circ $ , $\sigma _{{\rm{VH}}}^\circ $ , and $\sigma _{{\rm{VH/VV}}}^\circ $) is provided by Sentinel-1A mission through two angular normalized orbits (30 and 132) allowing a repetitiveness from 12 to 6 days. $\sigma _{{\rm{VH}}/{\rm{VV}}}^\circ $ is successfully used to derive GAIsar (R2 = 0.72, relative root mean square error (rRMSE) = 10.4%) over the leaf development stages of the crop cycle from a nonlinear function. Others SAR signal ($\sigma _{{\rm{VV}}}^\circ $ and $\sigma _{{\rm{VH}}}^\circ $) are too much related to soil moisture changes. At the opposite of GAIopt, GAIsar cannot be used alone in the model to accurately estimate vegetation parameters. Finally, the robustness of the results comes from the combination of GAI derived from SAR and optical data. In this condition, the model is able, thanks to the inclusion of a new “production module,” to simulate dry masses and yield (R2 > 0.75 and rRMSE < 12.75%) with good performances in the diagnostic approach. In the context of forecast, results offer lower performances but stay acceptable, with relative errors inferior to 13.95% (R2 > 0.69). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19391404
Volume :
11
Issue :
12
Database :
Complementary Index
Journal :
IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing
Publication Type :
Academic Journal
Accession number :
134019828
Full Text :
https://doi.org/10.1109/JSTARS.2018.2878502