Back to Search Start Over

Classification of Coral Reefs in the South China Sea by Combining Airborne LiDAR Bathymetry Bottom Waveforms and Bathymetric Features.

Authors :
Su, Dianpeng
Yang, Fanlin
Ma, Yue
Zhang, Kai
Huang, Jue
Wang, Mingwei
Source :
IEEE Transactions on Geoscience & Remote Sensing; Feb2019, Vol. 57 Issue 2, p815-828, 14p
Publication Year :
2019

Abstract

Geographic information describing coral reefs plays an important role in constructing electronic chart systems and protecting the ecological environment of the ocean. To derive geographic information of coral reefs more effectively, this paper proposes a methodology to detect coral reefs by combining airborne LiDAR bathymetry (ALB) bottom waveform and bathymetric feature data. A feature vector was established by deriving bottom waveform variables (the peak amplitude, pulsewidth, area, skewness, kurtosis, and backscatter cross section) and bathymetric variables (the depth standard deviation, slope, bathymetric position index, Gaussian curvature, mean curvature, and roughness). Using a support vector machine classifier, coral reefs were detected by distinguishing two classes (coral reefs and others) on the seafloor. To evaluate the classification performance of coral reefs, the developed method was applied to Yuanzhi Island, South China Sea surveys, and verified by field data (aerial digital camera images and underwater video images). The results showed that the classification overall accuracy of coral reefs can be greatly improved from 80.59%/90.31% when ALB bottom waveform or bathymetric variables features were used separately to 93.57% when using a combination of ALB bottom waveform and bathymetric features. In addition, the kappa coefficient can also be greatly improved from approximately 0.61/0.80 to 0.87. And the new proposed method performs better compared to the current classification method using ALB data to detect coral reefs with an overall accuracy of 90.92% and Kappa of 0.81. This highlights the potential of ALB data, combining waveform data and bathymetric data, for precisely detecting coral reefs in shallow water areas. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01962892
Volume :
57
Issue :
2
Database :
Complementary Index
Journal :
IEEE Transactions on Geoscience & Remote Sensing
Publication Type :
Academic Journal
Accession number :
134552058
Full Text :
https://doi.org/10.1109/TGRS.2018.2860931