Back to Search Start Over

Evaluation of a Novel Capacitor Charging Structure for Flicker Mitigation in High-Power Long-Pulse Modulators.

Authors :
Collins, Max
Martins, Carlos A.
Source :
IEEE Transactions on Plasma Science; Jan2019, Vol. 47 Issue 1, p985-993, 9p
Publication Year :
2019

Abstract

In order to generate high-voltage high-pulsed power, klystron modulators necessarily contain at least one capacitor bank charging structure supplying the energy to be released during the pulse. Conventional charging structures are based on ac/dc front-end units typically based on diode rectifiers combined with power charging structures operated in on/off mode as a second stage, producing prohibitive levels of grid flicker and harmonic contents on the ac grid side while operating at suboptimal power factor. These problems are usually corrected by both costly and spacious external grid compensators. Today, the increased demand on both accelerator peak power and pulselength (translating into higher average power), in conjunction with stricter regulations and standards represent additional challenges also in modulator design. An alternative method for capacitor bank charging, in a steady state allowing for the complete reduction of grid flicker as well as ac line current harmonics and reactive power, was presented by the authors in a preceding publication. This paper presents in further detail the benefits of the proposed power electronic structure and associated control scheme in the context of a review of other solutions suggested for constant power charging and flicker mitigation. This paper also contains a complete description of the proposed control scheme as well as further experimental results, including a thorough assessment of its performance under transient conditions. All experimental results were obtained on a klystron modulator prototype rated for long pulses (3.5 ms), high voltage (115 kV), and high pulsed power (peak power > 2 MW). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00933813
Volume :
47
Issue :
1
Database :
Complementary Index
Journal :
IEEE Transactions on Plasma Science
Publication Type :
Academic Journal
Accession number :
134552179
Full Text :
https://doi.org/10.1109/TPS.2018.2868456