Back to Search
Start Over
Lp-interpolation inequalities and global Sobolev regularity results (with an appendix by Ognjen Milatovic).
- Source :
- Annali di Matematica Pura ed Applicata; Feb2019, Vol. 198 Issue 1, p83-96, 14p
- Publication Year :
- 2019
-
Abstract
- On any complete Riemannian manifold M and for all p∈[2,∞), we prove a family of second-order Lp-interpolation inequalities that arise from the following simple Lp-estimate valid for every u∈C∞(M): ‖∇u‖pp≤‖uΔpu‖1∈[0,∞],where Δp denotes the p-Laplace operator. We show that these inequalities, in combination with abstract functional analytic arguments, allow to establish new global Sobolev regularity results for Lp-solutions of the Poisson equation for all p∈(1,∞), and new global Sobolev regularity results for the singular magnetic Schrödinger semigroups. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 03733114
- Volume :
- 198
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Annali di Matematica Pura ed Applicata
- Publication Type :
- Academic Journal
- Accession number :
- 135025007
- Full Text :
- https://doi.org/10.1007/s10231-018-0763-7