Back to Search
Start Over
Regulation of T cell expansion by antigen presentation dynamics.
- Source :
- Proceedings of the National Academy of Sciences of the United States of America; 3/26/2019, Vol. 116 Issue 13, p5914-5919, 6p
- Publication Year :
- 2019
-
Abstract
- An essential feature of the adaptive immune system is the proliferation of antigen-specific lymphocytes during an immune reaction to form a large pool of effector cells. This proliferation must be regulated to ensure an effective response to infection while avoiding immunopathology. Recent experiments in mice have demonstrated that the expansion of a specific clone of T cells in response to cognate antigen obeys a striking inverse power law with respect to the initial number of T cells. Here, we show that such a relationship arises naturally from a model in which T cell expansion is limited by decaying levels of presented antigen. The same model also accounts for the observed dependence of T cell expansion on affinity for antigen and on the kinetics of antigen administration. Extending the model to address expansion of multiple T cell clones competing for antigen, we find that higher-affinity clones can suppress the proliferation of lower-affinity clones, thereby promoting the specificity of the response. Using the model to derive optimal vaccination protocols, we find that exponentially increasing antigen doses can achieve a nearly optimized response. We thus conclude that the dynamics of presented antigen is a key regulator of both the size and specificity of the adaptive immune response. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00278424
- Volume :
- 116
- Issue :
- 13
- Database :
- Complementary Index
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Publication Type :
- Academic Journal
- Accession number :
- 135612089
- Full Text :
- https://doi.org/10.1073/pnas.1812800116