Back to Search Start Over

Separable equivalence of rings and symmetric algebras.

Authors :
Kadison, Lars
Source :
Bulletin of the London Mathematical Society; Apr2019, Vol. 51 Issue 2, p344-352, 9p
Publication Year :
2019

Abstract

We continue a study of separable equivalence from (Kadison, Comptes Rendus Math. Reports Acad. Sci. Canada, 15 (1993) 223–228; Hokkaido Math. J. 24 (1995) 527–549). We prove that symmetric separable equivalent rings A and B are linked by a Frobenius bimodule APB such that A is P‐separable over B. Separably equivalent rings are linked by a biseparable bimodule P. In addition, the ring monomorphism A↪EndPB is split, separable Frobenius. It is observed that left and right finite projective bimodules over symmetric algebras are Frobenius bimodules; twisted by the Nakayama automorphisms if over Frobenius algebras. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00246093
Volume :
51
Issue :
2
Database :
Complementary Index
Journal :
Bulletin of the London Mathematical Society
Publication Type :
Academic Journal
Accession number :
135666679
Full Text :
https://doi.org/10.1112/blms.12233