Back to Search
Start Over
Separable equivalence of rings and symmetric algebras.
- Source :
- Bulletin of the London Mathematical Society; Apr2019, Vol. 51 Issue 2, p344-352, 9p
- Publication Year :
- 2019
-
Abstract
- We continue a study of separable equivalence from (Kadison, Comptes Rendus Math. Reports Acad. Sci. Canada, 15 (1993) 223–228; Hokkaido Math. J. 24 (1995) 527–549). We prove that symmetric separable equivalent rings A and B are linked by a Frobenius bimodule APB such that A is P‐separable over B. Separably equivalent rings are linked by a biseparable bimodule P. In addition, the ring monomorphism A↪EndPB is split, separable Frobenius. It is observed that left and right finite projective bimodules over symmetric algebras are Frobenius bimodules; twisted by the Nakayama automorphisms if over Frobenius algebras. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00246093
- Volume :
- 51
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- Bulletin of the London Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 135666679
- Full Text :
- https://doi.org/10.1112/blms.12233