Back to Search
Start Over
Multiprojective spaces and the arithmetically Cohen–Macaulay property.
- Source :
- Mathematical Proceedings of the Cambridge Philosophical Society; May2019, Vol. 166 Issue 3, p583-597, 15p
- Publication Year :
- 2019
-
Abstract
- In this paper we study the arithmetically Cohen-Macaulay (ACM) property for sets of points in multiprojective spaces. Most of what is known is for ℙ<superscript>1</superscript> × ℙ<superscript>1</superscript> and, more recently, in (ℙ<superscript>1</superscript>)<superscript> r </superscript>. In ℙ<superscript>1</superscript> × ℙ<superscript>1</superscript> the so called inclusion property characterises the ACM property. We extend the definition in any multiprojective space and we prove that the inclusion property implies the ACM property in ℙ<superscript>m</superscript> × ℙ<superscript>n</superscript>. In such an ambient space it is equivalent to the so-called (⋆)-property. Moreover, we start an investigation of the ACM property in ℙ<superscript>1</superscript> × ℙ<superscript>n</superscript>. We give a new construction that highlights how different the behavior of the ACM property is in this setting. [ABSTRACT FROM AUTHOR]
- Subjects :
- POINT set theory
SPACE
Subjects
Details
- Language :
- English
- ISSN :
- 03050041
- Volume :
- 166
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Mathematical Proceedings of the Cambridge Philosophical Society
- Publication Type :
- Academic Journal
- Accession number :
- 135698724
- Full Text :
- https://doi.org/10.1017/S0305004118000142