Back to Search Start Over

A NOTCH feed-forward loop drives reprogramming from adrenergic to mesenchymal state in neuroblastoma.

Authors :
van Groningen, Tim
Akogul, Nurdan
Westerhout, Ellen M.
Chan, Alvin
Hasselt, Nancy E.
Zwijnenburg, Danny A.
Broekmans, Marloes
Stroeken, Peter
Haneveld, Franciska
Hooijer, Gerrit K. J.
Savci-Heijink, C. Dilara
Lakeman, Arjan
Volckmann, Richard
van Sluis, Peter
Valentijn, Linda J.
Koster, Jan
Versteeg, Rogier
van Nes, Johan
Source :
Nature Communications; 4/4/2019, Vol. 10 Issue 1, pN.PAG-N.PAG, 1p
Publication Year :
2019

Abstract

Transition between differentiation states in development occurs swift but the mechanisms leading to epigenetic and transcriptional reprogramming are poorly understood. The pediatric cancer neuroblastoma includes adrenergic (ADRN) and mesenchymal (MES) tumor cell types, which differ in phenotype, super-enhancers (SEs) and core regulatory circuitries. These cell types can spontaneously interconvert, but the mechanism remains largely unknown. Here, we unravel how a NOTCH3 intracellular domain reprogrammed the ADRN transcriptional landscape towards a MES state. A transcriptional feed-forward circuitry of NOTCH-family transcription factors amplifies the NOTCH signaling levels, explaining the swift transition between two semi-stable cellular states. This transition induces genome-wide remodeling of the H3K27ac landscape and a switch from ADRN SEs to MES SEs. Once established, the NOTCH feed-forward loop maintains the induced MES state. In vivo reprogramming of ADRN cells shows that MES and ADRN cells are equally oncogenic. Our results elucidate a swift transdifferentiation between two semi-stable epigenetic cellular states. Neuroblastoma includes adrenergic and mesenchymal cell types that can interconvert. Here, the authors show that this transdifferentiation is driven by a NOTCH feedforward loop that allows a swift transition between two semi-stable cellular states. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
10
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
135751865
Full Text :
https://doi.org/10.1038/s41467-019-09470-w