Back to Search Start Over

Spatiotemporal Modeling of Correlated Small‐Area Outcomes: Analyzing the Shared and Type‐Specific Patterns of Crime and Disorder.

Authors :
Quick, Matthew
Li, Guangquan
Law, Jane
Source :
Geographical Analysis; Apr2019, Vol. 51 Issue 2, p221-248, 28p
Publication Year :
2019

Abstract

This research applies a Bayesian multivariate modeling approach to analyze the spatiotemporal patterns of physical disorder, social disorder, property crime, and violent crime at the small‐area scale. Despite crime and disorder exhibiting similar spatiotemporal patterns, as hypothesized by broken windows and collective efficacy theories, past studies often analyze a single outcome and overlook the correlation structures between multiple crime and disorder types. Accounting for five covariates, the best‐fitting model partitions the residual risk of each crime and disorder type into one spatial shared component, one temporal shared component, and type‐specific spatial, temporal, and space–time components. The shared components capture the underlying spatial pattern and time trend common to all types of crime and disorder. Results show that population size, residential mobility, and the central business district are positively associated with all outcomes. The spatial shared component is found to explain the largest proportion of residual variability for all types of crime and disorder. Spatiotemporal hotspots of crime and disorder are examined to contextualize broken windows theory. Applications of multivariate spatiotemporal modeling with shared components to ecological crime theories and crime prevention policy are discussed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00167363
Volume :
51
Issue :
2
Database :
Complementary Index
Journal :
Geographical Analysis
Publication Type :
Academic Journal
Accession number :
135843671
Full Text :
https://doi.org/10.1111/gean.12173