Back to Search Start Over

Large-Scale-Fading Decoding in Cellular Massive MIMO Systems With Spatially Correlated Channels.

Authors :
Van Chien, Trinh
Mollen, Christopher
Bjornson, Emil
Source :
IEEE Transactions on Communications; Apr2019, Vol. 67 Issue 4, p2746-2762, 17p
Publication Year :
2019

Abstract

Massive multiple-input–multiple-output (MIMO) systems can suffer from coherent intercell interference due to the phenomenon of pilot contamination. This paper investigates a two-layer decoding method that mitigates both coherent and non-coherent interference in multi-cell Massive MIMO. To this end, each base station (BS) first estimates the channels to intra-cell users using either minimum mean-squared error (MMSE) or element-wise MMSE estimation based on uplink pilots. The estimates are used for local decoding on each BS followed by a second decoding layer where the BSs cooperate to mitigate inter-cell interference. An uplink achievable spectral efficiency (SE) expression is computed for arbitrary two-layer decoding schemes. A closed form expression is then obtained for correlated Rayleigh fading, maximum-ratio combining, and the proposed large-scale fading decoding (LSFD) in the second layer. We also formulate a sum SE maximization problem with both the data power and LSFD vectors as optimization variables. Since this is an NP-hard problem, we develop a low-complexity algorithm based on the weighted MMSE approach to obtain a local optimum. The numerical results show that both data power control and LSFD improve the sum SE performance over single-layer decoding multi-cell Massive MIMO systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00906778
Volume :
67
Issue :
4
Database :
Complementary Index
Journal :
IEEE Transactions on Communications
Publication Type :
Academic Journal
Accession number :
135966567
Full Text :
https://doi.org/10.1109/TCOMM.2018.2889090