Back to Search
Start Over
Multi-Objective Topology Optimization of a Magnetic Actuator Using an Adaptive Weight and Tunneling Method.
- Source :
- IEEE Transactions on Magnetics; Jun2019, Vol. 55 Issue 6, p1-4, 4p
- Publication Year :
- 2019
-
Abstract
- This paper proposes a multi-objective optimization method using an adaptive weight determination scheme and tunneling method. To find the optimum designs that are evenly distributed on the Pareto front, the weights of different objective functions are adaptively determined by using the concept of a hyperplane so that new solutions can be gradually found in the objective space. In addition, to avoid locally optimized solutions that are dominated by other Pareto optimum designs, a tunneling method is employed in the optimization process. To confirm the effectiveness of the proposed method, topology optimization of the magnetic actuator is performed. The magnetic force and volume of the actuator are considered as two conflicting objective functions in the optimization problem, and Pareto optimum solutions that are evenly distributed in the objective space could be obtained. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00189464
- Volume :
- 55
- Issue :
- 6
- Database :
- Complementary Index
- Journal :
- IEEE Transactions on Magnetics
- Publication Type :
- Academic Journal
- Accession number :
- 136509562
- Full Text :
- https://doi.org/10.1109/TMAG.2019.2899893