Back to Search Start Over

Expansion and Evolutionary Patterns of Glycosyltransferase Family 8 in Gramineae Crop Genomes and Their Expression under Salt and Cold Stresses in Oryza sativa ssp. japonica.

Authors :
Kong, Weilong
Gong, Ziyun
Zhong, Hua
Zhang, Yue
Zhao, Gangqing
Gautam, Mayank
Deng, Xiaoxiao
Liu, Chang
Zhang, Chenhao
Li, Yangsheng
Source :
Biomolecules (2218-273X); May2019, Vol. 9 Issue 5, p188, 1p
Publication Year :
2019

Abstract

Plant cell walls play a fundamental role in several ways, providing structural support for cells, resistance against pathogens and facilitating the communication between cells. The glycosyltransferase family 8 (GT8) is involved in the formation of the plant cell wall. However, the evolutionary relationship and the functional differentiation of this important gene family remain obscure in Gramineae crop genomes. In the present investigation, we identified 269 GT8 genes in the seven Gramineae representative crop genomes, namely, 33 in Hordeum vulgare, 37 in Brachypodium distachyon, 40 in Oryza sativa ssp. japonica, 41 in Oryza rufipogon, 36 in Setaria italica, 37 in Sorghum bicolor, and 45 in Zea mays. Phylogenetic analysis suggested that all identified GT8 proteins belonged to seven subfamilies: galacturonosyltransferase (GAUT), galacturonosyltransferase-like (GATL), GATL-related (GATR), galactinol synthase (GolS), and plant glycogenin-like starch initiation proteins A (PGSIP-A), PGSIP-B, and PGSIP-C. We estimated that the GAUT subfamily might be further divided into four subgroups (I–IV) due to differentiation of gene structures and expression patterns. Our orthogroup analysis identified 22 orthogroups with different sizes. Of these orthogroups, several orthogroups were lost in some species, such as S. italica and Z. mays. Moreover, lots of duplicate pairs and collinear pairs were discovered among these species. These results indicated that multiple duplication modes led to the expansion of this important gene family and unequal loss of orthogroups and subfamilies might have happened during the evolutionary process. RNA-seq, microarray analysis, and qRT-PCR analyses indicated that GT8 genes are critical for plant growth and development, and for stresses responses. We found that OsGolS1 was significantly up-regulated under salt stress, while OsGAUT21, OsGATL2, and OsGATL5 had remarkable up-regulation under cold stress. The current study highlighted the expansion and evolutionary patterns of the GT8 gene family in these seven Gramineae crop genomes and provided potential candidate genes for future salt- and cold- resistant molecular breeding studies in O. sativa. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2218273X
Volume :
9
Issue :
5
Database :
Complementary Index
Journal :
Biomolecules (2218-273X)
Publication Type :
Academic Journal
Accession number :
136753727
Full Text :
https://doi.org/10.3390/biom9050188