Back to Search Start Over

Precise control of nanoscale spacing between electrodes using different natured self-assembled monolayers.

Authors :
Young-Jun You
Yongjin Kim
Hyeunseok Cheun
Changhwan Shin
Do Young Kim
Jae Hak Lee
Joon Yub Song
Jae Woo Lee
Sae Youn Lee
Byeong-Kwon Ju
Jae Won Shim
Source :
Nanotechnology; 6/28/2019, Vol. 30 Issue 26, p1-1, 1p
Publication Year :
2019

Abstract

Herein, we introduce an interdigitated horizontal electrode (IHE) structure with a metal-based electron-collecting (or -injecting) electrode and a hole-collecting (or -injecting) electrode composed of a conductive polymeric material that has a nanoscale distance and is horizontally separated. In the IHE, a metal electrode is fabricated on a silicon-oxide substrate, and a self-assembled monolayer (SAM) is selectively bonded to the metal and the oxide to form a conductive polymer electrode by dip coating. Each of the SAM materials is composed of a head part bonded to the substrate surface and a tail part that is hydrophilic or hydrophobic. This inherent property makes the metal electrode hydrophobic and the oxide substrate hydrophilic. Ag is used as a metal electrode material and is combined with alkanethiol SAMs. The alkylsilane SAMs are combined with the silicon oxide substrate to make them hydrophilic, using poly (3, 4-ethylenedioxythiophene)-poly (PEDOT: PSS) as the conductive polymer material. In this study, we have found that there is a difference in the spacing between the two electrodes that depends on the combination of SAM materials. Each interval was spaced from a minimum of 140 nm to a maximum of 385 nm. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09574484
Volume :
30
Issue :
26
Database :
Complementary Index
Journal :
Nanotechnology
Publication Type :
Academic Journal
Accession number :
136835735
Full Text :
https://doi.org/10.1088/1361-6528/ab0eea