Back to Search
Start Over
Label-free neuroimaging in vivo using synchronous angular scanning microscopy with single-scattering accumulation algorithm.
- Source :
- Nature Communications; 7/17/2019, Vol. 10 Issue 1, pN.PAG-N.PAG, 1p
- Publication Year :
- 2019
-
Abstract
- Label-free in vivo imaging is crucial for elucidating the underlying mechanisms of many important biological systems in their most native states. However, the applicability of existing modalities has been limited to either superficial layers or early developmental stages due to tissue turbidity. Here, we report a synchronous angular scanning microscope for the rapid interferometric recording of the time-gated reflection matrix, which is a unique matrix characterizing full light-specimen interaction. By applying single scattering accumulation algorithm to the recorded matrix, we removed both high-order sample-induced aberrations and multiple scattering noise with the effective aberration correction speed of 10,000 modes/s. We demonstrated in vivo imaging of whole neural network throughout the hindbrain of the larval zebrafish at a matured stage where physical dissection used to be required for conventional imaging. Our method will expand the scope of applications for optical imaging, where fully non-invasive interrogation of living specimens is critical. A major challenge of in vivo imaging is imaging deeper, including in turbid tissue. The authors report an adaptive optics based microscope that uses coherent single scattering signal to reduce sample-induced aberrations and enable fast deep-tissue imaging of in vivo larval zebrafish brain. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 10
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 137558584
- Full Text :
- https://doi.org/10.1038/s41467-019-11040-z