Back to Search Start Over

Preparation of fast‐degrading poly(lactic acid)/soy protein concentrate biocomposite foams via supercritical CO2 foaming.

Authors :
Liu, Tong
Peng, Xiang‐Fang
Mi, Hao‐Yang
Li, Heng
Turng, Lih‐Sheng
Xu, Bai‐Ping
Source :
Polymer Engineering & Science; Sep2019, Vol. 59 Issue 9, p1753-1762, 10p
Publication Year :
2019

Abstract

To increase the degradation rate of poly(lactic acid) (PLA), soy protein concentrate (SPC) was introduced via melt compounding using a self‐developed, co‐rotating, non‐twin‐screw extruder. Poly(2‐ethyl‐2‐oxazoline) (PEOX) and diphenyl methane diisocyanate (MDI) were added to plasticize the melt and improve the compatibility between PLA and SPC. The PLA/SPC blends were subsequently foamed using supercritical carbon dioxide (CO2) as a blowing agent to produce porous composites. The involvement of SPC promoted cold crystallization of PLA but reduced the thermal stability of the blends. PLA showed a strong interfacial bonding with modified SPC, and the SPC formed continuous three‐dimensional networks when its proportion reached 30 wt%. In the foaming process, SPC domains acted as heterogeneous nucleation sites, which resulted in enhanced cell densities and reduced cell diameters. The PLA/SPC (70:30) sample showed the finest cell structure due to the presence of the SPC network. For the same blends, increasing the foaming pressure from 16 to 20 MPa enhanced the cell density by about 5 times. The water absorption rate and the biodegradation rate of the PLA/SPC foams were much higher than that of neat PLA due to the hydrophilicity of SPC and the porous structure of the foams. POLYM. ENG. SCI., 59:1753–1762, 2019. © 2019 Society of Plastics Engineers [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00323888
Volume :
59
Issue :
9
Database :
Complementary Index
Journal :
Polymer Engineering & Science
Publication Type :
Academic Journal
Accession number :
138414418
Full Text :
https://doi.org/10.1002/pen.25175