Back to Search Start Over

Modification of O and CO binding on Pt nanoparticles due to electronic and structural effects of titania supports.

Authors :
Ellaby, Tom
Briquet, Ludovic
Sarwar, Misbah
Thompsett, David
Skylaris, Chris-Kriton
Source :
Journal of Chemical Physics; 9/21/2019, Vol. 151 Issue 11, pN.PAG-N.PAG, 13p, 5 Diagrams, 6 Charts, 4 Graphs
Publication Year :
2019

Abstract

Metal oxide supports often play an active part in heterogeneous catalysis by moderating both the structure and the electronic properties of the metallic catalyst particle. In order to provide some fundamental understanding on these effects, we present here a density functional theory (DFT) investigation of the binding of O and CO on Pt nanoparticles supported on titania (anatase) surfaces. These systems are complex, and in order to develop realistic models, here, we needed to perform DFT calculations with up to ∼1000 atoms. By performing full geometry relaxations at each stage, we avoid any effects of "frozen geometry" approximations. In terms of the interaction of the Pt nanoparticles with the support, we find that the surface deformation of the anatase support contributes greatly to the adsorption of each nanoparticle, especially for the anatase (001) facet. We attempt to separate geometric and electronic effects and find a larger contribution to ligand binding energy arising from the former. Overall, we show an average weakening (compared to the isolated nanoparticle) of ∼0.1 eV across atop, bridge and hollow binding sites on supported Pt<subscript>55</subscript> for O and CO, and a preservation of site preference. Stronger effects are seen for O on Pt<subscript>13</subscript>, which is heavily deformed by anatase supports. In order to rationalize our results and examine methods for faster characterization of metal catalysts, we make use of electronic descriptors, including the d-band center and an electronic density based descriptor. We expect that the approach followed in this study could be applied to study other supported metal catalysts. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
151
Issue :
11
Database :
Complementary Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
138756824
Full Text :
https://doi.org/10.1063/1.5120571