Back to Search Start Over

Water Pathways for the Hindu-Kush-Himalaya and an Analysis of Three Flood Events.

Authors :
Boschi, Robert
Lucarini, Valerio
Source :
Atmosphere; Sep2019, Vol. 10 Issue 9, p489-489, 1p
Publication Year :
2019

Abstract

The climatology of major sources and pathways of moisture for three locales along the Hindu-Kush-Himalayan region are examined, by use of Lagrangian methods applied to the ERA-Interim dataset, over the period from 1980 to 2016 for both summer (JJA) and winter (NDJ) periods. We also investigate the major flooding events of 2010, 2013, and 2017 in Pakistan, Uttarakhand, and Kathmandu, respectively, and analyse a subset of the climatology associated with the 20 most significant rainfall events over each region of interest. A comparison is made between the climatology and extreme events, in the three regions of interest, during the summer monsoon period. For Northern Pakistan and Uttarakhand, the Indus basin plays the largest role in moisture uptake. Moisture is also gathered from Eastern Europe and Russia. Extreme events display an increased influence of sub-tropical weather systems, which manifest themselves through low-level moisture transport; predominantly from the Arabian sea and along the Gangetic plain. In the Kathmandu region, it is found that the major moisture sources come from the Gangetic plain, Arabian Sea, Red Sea, Bay of Bengal, and the Indus basin. In this case, extreme event pathways largely match those of the climatology, although an increased number of parcels originate from the western end of the Gangetic plain. These results provide insights into the rather significant influence of mid-latitudinal weather systems, even during the monsoon season, in defining the climatology of the Hindu-Kush-Himalaya region, as well as how extreme precipitation events in this region represent atypical moisture pathways. We propose a detailed investigation of how such water pathways are represented in climate models for the present climate conditions and in future climate scenarios, as this may be extremely relevant for understanding the impacts of climate change on the cryosphere and hydrosphere of the region. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734433
Volume :
10
Issue :
9
Database :
Complementary Index
Journal :
Atmosphere
Publication Type :
Academic Journal
Accession number :
138961337
Full Text :
https://doi.org/10.3390/atmos10090489