Back to Search Start Over

A Thyristor Full-Bridge-Based DC Circuit Breaker.

Authors :
Guo, Yanxun
Wang, Gang
Zeng, Dehui
Li, Haifeng
Chao, Hong
Source :
IEEE Transactions on Power Electronics; Jan2020, Vol. 35 Issue 1, p1111-1123, 13p
Publication Year :
2020

Abstract

DC circuit breakers (DCCBs) are vital for the safe and continuous operation of large high-voltage dc grids. Insulated-gate bipolar transistor-based hybrid DCCBs (IHCBs) can interrupt currents quickly and have good operational characteristics. Thyristor-based hybrid DCCBs (THCBs) are superior to IHCBs in terms of interruption capacity because of the large surge current capacity of thyristors. Nevertheless, existing THCBs have limitations regarding one or more of the following characteristics: pre-activation, fast reclosing, quick interruption of small current and no requirement for an additional pre-charge source. This paper proposes a thyristor full-bridge-based dc circuit breaker (TFCB) with all favorable characteristics mentioned above. The TFCB contains a main conductor, a main breaker (MB), an auxiliary branch, and an energy absorber. After an interruption, the capacitor in the TFCB can restore its initial voltage quickly to guarantee that the TFCB is available for the next interruption. Quick interruption of small currents is achieved using the additional charge current provided by the auxiliary branch. Pre-activation is achieved using the conduction path in the MB. The parameter designs are analyzed to ensure that the TFCB reliably interrupts currents without damaging itself. The proposed TFCB is validated using prototype experiments and PSCAD/EMTDC simulations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08858993
Volume :
35
Issue :
1
Database :
Complementary Index
Journal :
IEEE Transactions on Power Electronics
Publication Type :
Academic Journal
Accession number :
139293263
Full Text :
https://doi.org/10.1109/TPEL.2019.2915808