Back to Search Start Over

Genome-wide identification of genes encoding putative secreted E3 ubiquitin ligases and functional characterization of PbRING1 in the biotrophic protist Plasmodiophora brassicae.

Authors :
Yu, Fangwei
Wang, Shenyun
Zhang, Wei
Tang, Jun
Wang, Hong
Yu, Li
Zhang, Xin
Fei, Zhangjun
Li, Jianbin
Source :
Current Genetics; Dec2019, Vol. 65 Issue 6, p1355-1365, 11p
Publication Year :
2019

Abstract

The E3 ubiquitin ligases are key regulators of protein ubiquitination, which have been shown to be involved in a variety of cellular responses to both biotic and abiotic stresses in eukaryotes. However, the E3 ubiquitin ligase homologues in the soil-borne plant pathogen Plasmodiophora brassicae, the causal agent of clubroot disease of crucifer crops worldwide, remain largely unknown. In this study, we characterized secreted E3 ubiquitin ligases, a group of proteins known to be involved in virulence in many pathogens, in a plasmodiophorid P. brassicae. Genome-wide search in the P. brassicae genome retrieved 139 putative E3 ubiquitin ligases, comprising of 115 RING, 15 HECT, 1 HECT-like, and 8 U-box E3 ubiquitin ligases. Among these E3 ubiquitin ligases, 11 RING, 1 U-box, and 3 HECT were found to harbor signal peptide. Based on published RNA-seq data (Schwelm et al. in Sci Rep 5:11153, 2015), we found that these genes were differentially expressed in distinct life stages including germinating spores, maturing spores, and plasmodia. We characterized one potential secreted E3 ubiquitin ligase, PbRING1 (PBRA_000499). Yeast invertase assay showed that PbRING1 harbors a functional N-terminal signal peptide. PbRING1 also harbors a really interested new gene (RING) domain at its C terminus, which was found to display the E3 ligase activity in vitro. Collectively, this study provides a comprehensive insight into the reservoir of putative secreted E3 ligases in P. brassicae. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01728083
Volume :
65
Issue :
6
Database :
Complementary Index
Journal :
Current Genetics
Publication Type :
Academic Journal
Accession number :
139392147
Full Text :
https://doi.org/10.1007/s00294-019-00989-5