Back to Search Start Over

Optimal ultra-miniature polarimeters in silicon photonic integrated circuits.

Authors :
Lin, Zhongjin
Rusch, Leslie A.
Chen, Yuxuan
Shi, Wei
Source :
APL Photonics; Oct2019, Vol. 4 Issue 10, pN.PAG-N.PAG, 9p
Publication Year :
2019

Abstract

Measurement of the state of polarization of light is essential in a vast number of applications, such as quantum and classical communications, remote sensing, astronomy, and biomedical diagnostics. Nanophotonic structures and integrated photonic circuits can, in many circumstances, replace conventional discrete optical components for miniature polarimeters and chip-scale polarimetry systems and thus significantly improve robustness while minimizing the footprint and cost. We propose and experimentally demonstrate two silicon photonic four-photodetector (PD) division-of-amplitude polarimeters (4PD-DOAPs) using a complementary metal–oxide–semiconductor-compatible photonic fabrication process. The first design targets minimizing the number of optical components. The second design makes use of a slightly more complex circuit design to achieve an optimal frame for measurements; this measurement frame minimizes and equalizes estimation variances in the presence of the additive white Gaussian noise and the signal dependent shot noise. Further theoretical examination reveals that within the optimal measurement frames for Stokes polarimeters, the DOAP with four PDs has the minimal equally weighted variance compared to those with a greater number of PDs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23780967
Volume :
4
Issue :
10
Database :
Complementary Index
Journal :
APL Photonics
Publication Type :
Academic Journal
Accession number :
139437886
Full Text :
https://doi.org/10.1063/1.5098492