Back to Search
Start Over
The innovation algorithms for multivariable state‐space models.
- Source :
- International Journal of Adaptive Control & Signal Processing; Nov2019, Vol. 33 Issue 11, p1601-1618, 18p
- Publication Year :
- 2019
-
Abstract
- Summary: This paper derives the input‐output representation of the dynamical system described by a linear multivariable state‐space model and the corresponding multivariate linear regressive model (ie, multivariate equation‐error model). A projection identification algorithm, a multivariate stochastic gradient identification algorithm, and a multi‐innovation stochastic gradient (MISG) identification algorithm are proposed for multivariate equation‐error systems by using the negative gradient search and the multi‐innovation identification theory. The convergence analysis of the MISG algorithm indicates that the parameter estimation errors converge to zero under the persistent excitation condition. Finally, a numerical example illustrates the effectiveness of the proposed algorithms. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 08906327
- Volume :
- 33
- Issue :
- 11
- Database :
- Complementary Index
- Journal :
- International Journal of Adaptive Control & Signal Processing
- Publication Type :
- Academic Journal
- Accession number :
- 139455669
- Full Text :
- https://doi.org/10.1002/acs.3053