Back to Search Start Over

An iron-doped cobalt phosphide nano-electrocatalyst derived from a metal–organic framework for efficient water splitting.

Authors :
Lin, Can
Wang, Pengyan
Jin, Huihui
Zhao, Jiahuan
Chen, Ding
Liu, Suli
Zhang, Chengtian
Mu, Shichun
Source :
Dalton Transactions: An International Journal of Inorganic Chemistry; 11/28/2019, Vol. 48 Issue 44, p16555-16561, 7p
Publication Year :
2019

Abstract

The development of hydrogen energy relies to a large extent on the electrocatalysts that are highly efficient and widely sourced. Although transition metal phosphides (TMPs) have made great achievements in reducing the overpotential of hydrogen evolution reaction (HER), improving oxygen evolution reaction (OER) performance that is relatively lagging in view of relatively large overpotentials and high kinetics energy barriers is yet to be achieved. Herein, we propose an extremely convenient and practical approach to prepare iron-doped cobalt phosphide nanoparticles (Fe–Co<subscript>x</subscript>P NPs) via a one-step method by introducing an iron element in the in situ synthesis of a metal–organic framework (ZIF-67) and then subjecting to a phosphate treatment. The as-obtained Fe–Co<subscript>x</subscript>P showed an excellent OER and acceptable HER activities. In particular, for OER, the optimized Fe-doped Co<subscript>x</subscript>P (Fe<subscript>0.27</subscript>Co<subscript>0.73</subscript>P) exhibits an ultra-low overpotential of 251 mV at a current density of 10 mA cm<superscript>−2</superscript>, a negligible electrocatalytic degradation after 3000 CV cycles, and time over 40 h-reliant current density stability. When employed as cathode and anode electrodes in water splitting, the current density of 10 mA cm<superscript>−2</superscript> can be achieved at a potential of 1.68 V. Our facile synthetic strategy and innovative ideas are undoubtedly beneficial to the design and construction of advanced water-splitting electrocatalysts. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14779226
Volume :
48
Issue :
44
Database :
Complementary Index
Journal :
Dalton Transactions: An International Journal of Inorganic Chemistry
Publication Type :
Academic Journal
Accession number :
139626105
Full Text :
https://doi.org/10.1039/c9dt03619a