Back to Search Start Over

Assessing stability of metal tellurides as alternative photomask materials for extreme ultraviolet lithography.

Authors :
Luong, Vu
Philipsen, Vicky
Opsomer, Karl
Rip, Jens
Hendrickx, Eric
Heyns, Marc
Detavernier, Christophe
Laubis, Christian
Scholze, Frank
Source :
Journal of Vacuum Science & Technology: Part B-Nanotechnology & Microelectronics; Nov2019, Vol. 37 Issue 6, p1-9, 9p
Publication Year :
2019

Abstract

Tellurium (Te) is one of the elements with highest extinction coefficient κ at the 13.5 nm extreme-ultraviolet (EUV) wavelength. It is being considered as an alternative absorber material for binary photomasks in EUV lithography. The absorber material is required to remain chemically stable during EUV exposure, at elevated temperatures up to 150 °C, during mask cleaning, and in the low hydrogen pressure environment that is present in the EUV scanner. However, Te is known to react with oxygen and hydrogen, forming less EUV absorbing TeO<subscript>2</subscript> and more volatile H<subscript>2</subscript>Te, respectively. Since the melting temperature of Te is only 449.5 °C at normal pressure, alloying Te with a more stable metal might result in a high κ material that will remain thermally and chemically stable over a wider range of operating conditions. In this paper, the authors report on the stability assessment of metal telluride (M-Te) alloys for the EUV absorber material. They combined Te with high κ metals, noble metals, and etchable metals. High κ and noble M-Te materials are both thermally more stable than etchable M-Te, but they cannot be patterned easily for use in an EUV photomask. High κ M-Te exhibits polycrystal morphology at room temperature compared to quasiamorphous noble M-Te though both can crystallize at a higher temperature. Hydrogen stability and cleaning solution stability of M-Te materials are improved considerably compared to Te, but their higher surface reactivity cannot be completely mitigated without the addition of an inert capping layer. Furthermore, etchable M-Te alloys are easily oxidized during deposition, resulting in lower electron density and hence lower κ. Nevertheless, M-Te alloys may be a way to stabilize Te for usage as the EUV absorber material. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21662746
Volume :
37
Issue :
6
Database :
Complementary Index
Journal :
Journal of Vacuum Science & Technology: Part B-Nanotechnology & Microelectronics
Publication Type :
Academic Journal
Accession number :
140275605
Full Text :
https://doi.org/10.1116/1.5125662