Back to Search Start Over

Pore‐Scale Modeling of Fluid‐Fluid Interfacial Area in Variably Saturated Porous Media Containing Microscale Surface Roughness.

Authors :
Jiang, Hao
Guo, Bo
Brusseau, Mark L.
Source :
Water Resources Research; Jan2020, Vol. 56 Issue 1, pN.PAG-N.PAG, 1p
Publication Year :
2020

Abstract

A pore‐scale model is developed to simulate fluid‐fluid interfacial area in variably saturated porous media, with a specific focus on incorporating the effects of solid‐surface roughness. The model is designed to quantify total (film and meniscus) fluid‐fluid interfacial area (Anw) over the full range of wetting‐phase fluid saturation (Sw) based on the inherent properties of the porous medium. The model employs a triangular pore space bundle‐of‐cylindrical‐capillaries framework, modified with three surface roughness‐related parameters. The first parameter (surface roughness factor) represents the overall magnitude of surface roughness, whereas the other two parameters (interface growth factor and critical adsorptive film thickness) reflect the microscale structure of surface roughness. A series of sensitivity analyses were conducted for the controlling variables, and the efficacy of the model was tested using air‐water interfacial area data measured for three natural porous media. The model produced good simulations of the measured Anw data over the full range of saturation. The results demonstrate that total interfacial areas for natural media are typically much larger than those for ideal media comprising smooth surfaces due to the substantial contribution of surface roughness to wetting‐film interfacial area. The degree to which fluid‐fluid interfacial area is influenced by roughness is a function of fluid‐retention characteristics and the nature of the rough surfaces. The full impact of roughness may be masked to some degree due to the formation of thick wetting films, which is explicitly quantified by the model. Application of the model provides insight into the importance of the interplay between pore‐scale distribution and configuration of wetting fluid and the surface properties of solids. Key Points: A triangular pore space BCC model is developed to simulate the impact of solid surface roughness on fluid‐fluid interfacial areaModel efficacy is tested with air‐water interfacial area data measured for three natural porous mediaThe model presents a means by which to quantify fluid‐fluid interfacial area for natural porous media in multiphase fluid systems [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00431397
Volume :
56
Issue :
1
Database :
Complementary Index
Journal :
Water Resources Research
Publication Type :
Academic Journal
Accession number :
141449970
Full Text :
https://doi.org/10.1029/2019WR025876