Back to Search Start Over

Direct investigation of current transport in cells by conductive atomic force microscopy.

Authors :
ZHAO, W.
CHEONG, L.‐Z.
XU, S.
CUI, W.
SONG, S.
ROURK, C.J.
SHEN, C.
Source :
Journal of Microscopy; Jan2020, Vol. 277 Issue 1, p49-57, 9p, 4 Color Photographs
Publication Year :
2020

Abstract

Summary: Currents play critical roles in neurons. Direct observation of current flows in cells at nanometre dimensions and picoampere current resolution is still a daunting task. In this study, we investigated the current flows in hippocampal neurons, PC12 cells and astrocytes in response to voltages applied to the cell membranes using conductive atomic force microscopy (CAFM). The spines in the hippocampal neurons play crucial roles in nerve signal transfer. When the applied voltage was greater than 7.2 V, PC12 cells even show metallic nanowire‐like characteristics. Both the cell body and glial filaments of astrocytes yielded CAFM test results that reflect different electrical conductance. To our best knowledge, the electrical characteristics and current transport through components of cells (especially neurons) in response to an applied external voltage have been revealed for the first time at nanometre dimensions and picoampere current levels. We believe that such studies will pave new ways to study and model the electrical characteristics and physiological behaviours in cells and other biological samples. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00222720
Volume :
277
Issue :
1
Database :
Complementary Index
Journal :
Journal of Microscopy
Publication Type :
Academic Journal
Accession number :
141472891
Full Text :
https://doi.org/10.1111/jmi.12861